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Résumé

This work is concerned with the statistical analysis of matrix-valued time series. These
are data collected over a network of sensors (typically a set of spatial locations), recording,
over time, observations of multiple measurements. From such data, we propose to learn,
in an online fashion, a graph that captures two aspects of dependency: one describing the
sparse spatial relationship between sensors, and the other characterizing the measurements’
relationship. To this end, we introduce a novel multivariate autoregressive model to infer the
graph topology encoded in the coefficient matrix which captures the sparse Granger causality
dependency structure present in such matrix-valued time series. We decompose the graph
by imposing a Kronecker sum structure on the coefficient matrix. We develop two online
approaches to learn the graph in a recursive way. The first one uses Wald test for the pro-
jected OLS estimation, where we derive the asymptotic distribution for the estimator. For
the second one, we propose a novel Lasso-type optimization problem. We rely on homotopy
algorithms to derive updating rules for estimating the coefficient matrix. Furthermore, we
provide an adaptive tuning procedure for the regularization parameter. Numerical experi-
ments using both synthetic and real data, are performed to support the effectiveness of the
proposed learning approaches.
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